Arbeitspapier

Cross-Fitting and Averaging for Machine Learning Estimation of Heterogeneous Treatment Effects

We investigate the finite sample performance of sample splitting, cross-fitting and averaging for the estimation of the conditional average treatment effect. Recently proposed methods, so-called meta- learners, make use of machine learning to estimate different nuisance functions and hence allow for fewer restrictions on the underlying structure of the data. To limit a potential overfitting bias that may result when using machine learning methods, cross- fitting estimators have been proposed. This includes the splitting of the data in different folds to reduce bias and averaging over folds to restore efficiency. To the best of our knowledge, it is not yet clear how exactly the data should be split and averaged. We employ a Monte Carlo study with different data generation processes and consider twelve different estimators that vary in sample-splitting, cross-fitting and averaging procedures. We investigate the performance of each estimator independently on four different meta-learners: the doubly-robust-learner, R-learner, T-learner and X-learner. We find that the performance of all meta-learners heavily depends on the procedure of splitting and averaging. The best performance in terms of mean squared error (MSE) among the sample split estimators can be achieved when applying cross-fitting plus taking the median over multiple different sample-splitting iterations. Some meta-learners exhibit a high variance when the lasso is included in the ML methods. Excluding the lasso decreases the variance and leads to robust and at least competitive results.

Language
Englisch

Bibliographic citation
Series: IRTG 1792 Discussion Paper ; No. 2020-014

Classification
Wirtschaft
Econometrics
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
Computational Techniques; Simulation Modeling
Subject
causal inference
sample splitting
cross-fitting
sample averaging
machine learning
simulation study

Event
Geistige Schöpfung
(who)
Jacob, Daniel
Event
Veröffentlichung
(who)
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
(where)
Berlin
(when)
2020

Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Jacob, Daniel
  • Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Time of origin

  • 2020

Other Objects (12)