Arbeitspapier

Covariate selection and model averaging in semiparametric estimation of treatment effects

In the practice of program evaluation, choosing the covariates and the functional form of the propensity score is an important choice for estimating treatment effects. This paper proposes data-driven model selection and model averaging procedures that address this issue for the propensity score weighting estimation of the average treatment effects for treated (ATT). Building on the focussed information criterion (FIC), the proposed selection and averaging procedures aim to minimize the estimated mean squared error (MSE) of the ATT estimator in a local asymptotic framework. We formulate model averaging as a statistical decision problem in a limit experiment, and derive an averaging scheme that is Bayes optimal with respect to a given prior for the localisation parameters in the local asymptotic framework. In our Monte Carlo studies, the averaging estimator outperforms the post-covariate-selection estimator in terms of MSE, and shows a substantial reduction in MSE compared to conventional ATT estimators. We apply the procedures to evaluate the effect ot the labour market program described in LaLonde (1986).

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP61/13

Klassifikation
Wirtschaft
Thema
Treatment effects
Propensity score
Model selection
Focussed information criterion
Model averaging

Ereignis
Geistige Schöpfung
(wer)
Kitagawa, Toru
Muris, Chris
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2013

DOI
doi:10.1920/wp.cem.2013.6113
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kitagawa, Toru
  • Muris, Chris
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2013

Ähnliche Objekte (12)