Arbeitspapier

Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence

We investigate the finite sample performance of causal machine learning estimators for heterogeneous causal effects at different aggregation levels. We employ an Empirical Monte Carlo Study that relies on arguably realistic data generation processes (DGPs) based on actual data. We consider 24 different DGPs, eleven different causal machine learning estimators, and three aggregation levels of the estimated effects. In the main DGPs, we allow for selection into treatment based on a rich set of observable covariates. We provide evidence that the estimators can be categorized into three groups. The first group performs consistently well across all DGPs and aggregation levels. These estimators have multiple steps to account for the selection into the treatment and the outcome process. The second group shows competitive performance only for particular DGPs. The third group is clearly outperformed by the other estimators.

Sprache
Englisch

Erschienen in
Series: IZA Discussion Papers ; No. 12039

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Thema
causal machine learning
conditional average treatment effects
selection-on-observables
random forest
causal forest
lasso

Ereignis
Geistige Schöpfung
(wer)
Knaus, Michael C.
Lechner, Michael
Strittmatter, Anthony
Ereignis
Veröffentlichung
(wer)
Institute of Labor Economics (IZA)
(wo)
Bonn
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Knaus, Michael C.
  • Lechner, Michael
  • Strittmatter, Anthony
  • Institute of Labor Economics (IZA)

Entstanden

  • 2018

Ähnliche Objekte (12)