Arbeitspapier

Modified Causal Forests for Estimating Heterogeneous Causal Effects

Uncovering the heterogeneity of causal effects of policies and business decisions at various levels of granularity provides substantial value to decision makers. This paper develops new estimation and inference procedures for multiple treatment models in a selection-on-observables frame-work by modifying the Causal Forest approach suggested by Wager and Athey (2018). The new estimators have desirable theoretical and computational properties for various aggregation levels of the causal effects. An Empirical Monte Carlo study shows that they may outperform previously suggested estimators. Inference tends to be accurate for effects relating to larger groups and conservative for effects relating to fine levels of granularity. An application to the evaluation of an active labour market programme shows the value of the new methods for applied research.

Sprache
Englisch

Erschienen in
Series: IZA Discussion Papers ; No. 12040

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Mobility, Unemployment, and Vacancies: Public Policy
Thema
causal machine learning
statistical learning
average treatment effects
conditional average treatment effects
multiple treatments
selection-on-observable
causal forests

Ereignis
Geistige Schöpfung
(wer)
Lechner, Michael
Ereignis
Veröffentlichung
(wer)
Institute of Labor Economics (IZA)
(wo)
Bonn
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Lechner, Michael
  • Institute of Labor Economics (IZA)

Entstanden

  • 2018

Ähnliche Objekte (12)