Arbeitspapier
Modified Causal Forests for Estimating Heterogeneous Causal Effects
Uncovering the heterogeneity of causal effects of policies and business decisions at various levels of granularity provides substantial value to decision makers. This paper develops new estimation and inference procedures for multiple treatment models in a selection-on-observables frame-work by modifying the Causal Forest approach suggested by Wager and Athey (2018). The new estimators have desirable theoretical and computational properties for various aggregation levels of the causal effects. An Empirical Monte Carlo study shows that they may outperform previously suggested estimators. Inference tends to be accurate for effects relating to larger groups and conservative for effects relating to fine levels of granularity. An application to the evaluation of an active labour market programme shows the value of the new methods for applied research.
- Sprache
-
Englisch
- Erschienen in
-
Series: IZA Discussion Papers ; No. 12040
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Mobility, Unemployment, and Vacancies: Public Policy
- Thema
-
causal machine learning
statistical learning
average treatment effects
conditional average treatment effects
multiple treatments
selection-on-observable
causal forests
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Lechner, Michael
- Ereignis
-
Veröffentlichung
- (wer)
-
Institute of Labor Economics (IZA)
- (wo)
-
Bonn
- (wann)
-
2018
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Lechner, Michael
- Institute of Labor Economics (IZA)
Entstanden
- 2018