Electronic characteristics of ultra‐thin passivation layers for silicon photovoltaics

Abstract: Surface passivating thin films are crucial for limiting the electrical losses during charge carrier collection in silicon photovoltaic devices. Certain dielectric coatings of more than 10 nm provide excellent surface passivation, and ultra-thin (<2 nm) dielectric layers can serve as interlayers in passivating contacts. Here, ultra-thin passivating films of SiO2, Al2O3, and HfO2 are created via plasma-enhanced atomic layer deposition and annealing. It is found that thin negatively charged HfO2 layers exhibit excellent passivation properties—exceeding those of SiO2 and Al2O3—with 0.9 nm HfO2 annealed at 450 °C providing a surface recombination velocity of 18.6 cm s−1. The passivation quality is dependent on annealing temperature and layer thickness, and optimum passivation is achieved with HfO2 layers annealed at 450 °C measured to be 2.2–3.3 nm thick which give surface recombination velocities ≤2.5 cm s−1 and J0 values of ≈14 fA cm−2. The superior passivation quality of HfO2 nanolayers makes them a promising candidate for future passivating contacts in high-efficiency silicon solar cells

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Advanced materials interfaces. - 9, 28 (2022) , 2201339, ISSN: 2196-7350

Classification
Ingenieurwissenschaften und Maschinenbau

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2023
Creator
Pain, Sophie L.
Khorani, Edris
Niewelt, Tim
Wratten, Ailish
Paez Fajardo, Galo J.
Winfield, Ben P.
Bonilla, Ruy S.
Walker, Marc
Piper, Louis F. J.
Grant, Nicholas E.
Murphy, John D.

DOI
10.1002/admi.202201339
URN
urn:nbn:de:bsz:25-freidok-2341101
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:54 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2023

Other Objects (12)