Artikel

Risk factor evolution for counterparty credit risk under a hidden Markov model

One of the key components of counterparty credit risk (CCR) measurement is generating scenarios for the evolution of the underlying risk factors, such as interest and exchange rates, equity and commodity prices, and credit spreads. Geometric Brownian Motion (GBM) is a widely used method for modeling the evolution of exchange rates. An important limitation of GBM is that, due to the assumption of constant drift and volatility, stylized facts of financial time-series, such as volatility clustering and heavy-tailedness in the returns distribution, cannot be captured. We propose a model where volatility and drift are able to switch between regimes; more specifically, they are governed by an unobservable Markov chain. Hence, we model exchange rates with a hidden Markov model (HMM) and generate scenarios for counterparty exposure using this approach. A numerical study is carried out and backtesting results for a number of exchange rates are presented. The impact of using a regime-switching model on counterparty exposure is found to be profound for derivatives with non-linear payoffs.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 7 ; Year: 2019 ; Issue: 2 ; Pages: 1-22 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
Counterparty Credit Risk
Hidden Markov Model
Risk Factor Evolution
Backtesting
FX rate
Geometric Brownian Motion

Ereignis
Geistige Schöpfung
(wer)
Anagnostou, Ioannis
Kandhai, Drona
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2019

DOI
doi:10.3390/risks7020066
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Anagnostou, Ioannis
  • Kandhai, Drona
  • MDPI

Entstanden

  • 2019

Ähnliche Objekte (12)