Arbeitspapier

Nonparametric Estimation for Non-Homogeneous Semi-Markov Processes: An Application to Credit Risk

We propose procedures for estimating the time-dependent transition matrices for the general class of finite nonhomogeneous continuous-time semi-Markov processes. We prove the existence and uniqueness of solutions for the system of Volterra integral equations defining the transition matrices, therefore showing that these empirical transition probabilities can be estimated from window censored event-history data. An implementation of the method is presented based on nonparametric estimators of the hazard rate functions in the general and separable cases. A Monte Carlo study is performed to assess the small sample behavior of the resulting estimators. We use these new estimators for dealing with a central issue in credit risk. We consider the problem of obtaining estimates of the historical corporate default and rating migration probabilities using a dataset on credit ratings from Standard & Poor's.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 06-024/2

Klassifikation
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Duration Analysis; Optimal Timing Strategies
Portfolio Choice; Investment Decisions
Thema
Nonhomogeneous semi-Markov processes
transition matrix
Volterra integral equations
separability
credit risk

Ereignis
Geistige Schöpfung
(wer)
Monteiro, Andre
Smirnov, Georgi V.
Lucas, Andre
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2006

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Monteiro, Andre
  • Smirnov, Georgi V.
  • Lucas, Andre
  • Tinbergen Institute

Entstanden

  • 2006

Ähnliche Objekte (12)