Arbeitspapier

"Ito's Lemma" and the Bellman equation for poisson processes : an applied view

Using the Hamilton-Jacobi-Bellman equation, we derive both a Keynes-Ramsey rule and a closed form solution for an optimal consumption-investment problem with labor income. The utility function is unbounded and uncertainty stems from a Poisson process. Our results can be derived because of the proofs presented in the accompanying paper by Sennewald (2006). Additional examples are given which highlight the correct use of the Hamilton-Jacobi- Bellman equation and the change-of-variables formula (sometimes referred to as ?Ito's- Lemma?) under Poisson uncertainty.

Language
Englisch

Bibliographic citation
Series: CESifo Working Paper ; No. 1684

Classification
Wirtschaft
Portfolio Choice; Investment Decisions
Micro-Based Behavioral Economics: General‡
Criteria for Decision-Making under Risk and Uncertainty
Optimization Techniques; Programming Models; Dynamic Analysis
Subject
stochastic differential equation
Poisson process
Bellman equation
portfolio optimization
consumption optimization
Portfolio-Management
Zeitpräferenz
Analysis
Stochastischer Prozess
Theorie
Stochastische Differentialgleichung

Event
Geistige Schöpfung
(who)
Sennewald, Ken
Wälde, Klaus
Event
Veröffentlichung
(who)
Center for Economic Studies and ifo Institute (CESifo)
(where)
Munich
(when)
2006

Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Sennewald, Ken
  • Wälde, Klaus
  • Center for Economic Studies and ifo Institute (CESifo)

Time of origin

  • 2006

Other Objects (12)