Arbeitspapier
"Ito's Lemma" and the Bellman equation for Poisson processes: An applied view
Rare and randomly occurring events are important features of the economic world. In continuous time they can easily be modeled by Poisson processes. Analyzing optimal behavior in such a setup requires the appropriate version of the change of variables formula and the Hamilton-Jacobi-Bellman equation. This paper provides examples for the application of both tools in economic modeling. It accompanies the proofs in Sennewald (2005), who shows, under milder conditions than before, that the Hamilton-Jacobi-Bellman equation is both a necessary and sufficient criterion for optimality. The main example here consists of a consumption-investment problem with labor income. It is shown how the Hamilton-Jacobi-Bellman equation can be used to derive both a Keynes-Ramsey rule and a closed form solution. We also provide a new result.
- Sprache
-
Englisch
- Erschienen in
-
Series: W.E.P. - Würzburg Economic Papers ; No. 58
- Klassifikation
-
Wirtschaft
Optimization Techniques; Programming Models; Dynamic Analysis
Portfolio Choice; Investment Decisions
Micro-Based Behavioral Economics: General‡
Criteria for Decision-Making under Risk and Uncertainty
- Thema
-
Stochastic differential equation
Poisson process
Bellman equation
Portfolio optimization
Consumption optimization
Portfolio-Management
Zeitpräferenz
Analysis
Stochastischer Prozess
Theorie
Stochastische Differentialgleichung
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Sennewald, Ken
Wälde, Klaus
- Ereignis
-
Veröffentlichung
- (wer)
-
University of Würzburg, Department of Economics
- (wo)
-
Würzburg
- (wann)
-
2005
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Sennewald, Ken
- Wälde, Klaus
- University of Würzburg, Department of Economics
Entstanden
- 2005