Arbeitspapier
"Ito's Lemma" and the Bellman equation for poisson processes : an applied view
Using the Hamilton-Jacobi-Bellman equation, we derive both a Keynes-Ramsey rule and a closed form solution for an optimal consumption-investment problem with labor income. The utility function is unbounded and uncertainty stems from a Poisson process. Our results can be derived because of the proofs presented in the accompanying paper by Sennewald (2006). Additional examples are given which highlight the correct use of the Hamilton-Jacobi- Bellman equation and the change-of-variables formula (sometimes referred to as ?Ito's- Lemma?) under Poisson uncertainty.
- Sprache
-
Englisch
- Erschienen in
-
Series: CESifo Working Paper ; No. 1684
- Klassifikation
-
Wirtschaft
Portfolio Choice; Investment Decisions
Micro-Based Behavioral Economics: General‡
Criteria for Decision-Making under Risk and Uncertainty
Optimization Techniques; Programming Models; Dynamic Analysis
- Thema
-
stochastic differential equation
Poisson process
Bellman equation
portfolio optimization
consumption optimization
Portfolio-Management
Zeitpräferenz
Analysis
Stochastischer Prozess
Theorie
Stochastische Differentialgleichung
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Sennewald, Ken
Wälde, Klaus
- Ereignis
-
Veröffentlichung
- (wer)
-
Center for Economic Studies and ifo Institute (CESifo)
- (wo)
-
Munich
- (wann)
-
2006
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Sennewald, Ken
- Wälde, Klaus
- Center for Economic Studies and ifo Institute (CESifo)
Entstanden
- 2006