Arbeitspapier

"Ito's Lemma" and the Bellman equation for poisson processes : an applied view

Using the Hamilton-Jacobi-Bellman equation, we derive both a Keynes-Ramsey rule and a closed form solution for an optimal consumption-investment problem with labor income. The utility function is unbounded and uncertainty stems from a Poisson process. Our results can be derived because of the proofs presented in the accompanying paper by Sennewald (2006). Additional examples are given which highlight the correct use of the Hamilton-Jacobi- Bellman equation and the change-of-variables formula (sometimes referred to as ?Ito's- Lemma?) under Poisson uncertainty.

Sprache
Englisch

Erschienen in
Series: CESifo Working Paper ; No. 1684

Klassifikation
Wirtschaft
Portfolio Choice; Investment Decisions
Micro-Based Behavioral Economics: General‡
Criteria for Decision-Making under Risk and Uncertainty
Optimization Techniques; Programming Models; Dynamic Analysis
Thema
stochastic differential equation
Poisson process
Bellman equation
portfolio optimization
consumption optimization
Portfolio-Management
Zeitpräferenz
Analysis
Stochastischer Prozess
Theorie
Stochastische Differentialgleichung

Ereignis
Geistige Schöpfung
(wer)
Sennewald, Ken
Wälde, Klaus
Ereignis
Veröffentlichung
(wer)
Center for Economic Studies and ifo Institute (CESifo)
(wo)
Munich
(wann)
2006

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Sennewald, Ken
  • Wälde, Klaus
  • Center for Economic Studies and ifo Institute (CESifo)

Entstanden

  • 2006

Ähnliche Objekte (12)