Arbeitspapier
"Itô's Lemma" and the Bellman equation: An applied view
Rare and randomly occurring events are important features of the economic world. In continuous time they can easily be modeled by Poisson processes. Analyzing optimal behavior in such a setup requires the appropriate version of the change of variables formula and the Hamilton-Jacobi-Bellman equation. This paper provides examples for the application of both tools in economic modeling. It accompanies the proofs in Sennewald (2005), who shows, under milder conditions than before, that the Hamilton-Jacobi-Bellman equation is both a necessary and sufficient criterion for optimality. The main example here consists of a consumption-investment problem with labor income. It is shown how the Hamilton-Jacobi-Bellman equation can be used to derive both a Keynes-Ramsey rule and a closed form solution. We also provide a new result.
- Sprache
-
Englisch
- Erschienen in
-
Series: Dresden Discussion Paper Series in Economics ; No. 04/05
- Klassifikation
-
Wirtschaft
Criteria for Decision-Making under Risk and Uncertainty
Optimization Techniques; Programming Models; Dynamic Analysis
Micro-Based Behavioral Economics: General‡
Portfolio Choice; Investment Decisions
- Thema
-
Stochastic differential equation
Poisson process
Bellman equation
Portfolio optimization
Consump
Portfolio-Management
Zeitpräferenz
Analysis
Stochastischer Prozess
Theorie
Stochastische Differentialgleichung
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Sennewald, Ken
Wälde, Klaus
- Ereignis
-
Veröffentlichung
- (wer)
-
Technische Universität Dresden, Fakultät Wirtschaftswissenschaften
- (wo)
-
Dresden
- (wann)
-
2005
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Sennewald, Ken
- Wälde, Klaus
- Technische Universität Dresden, Fakultät Wirtschaftswissenschaften
Entstanden
- 2005