Artikel

On diagnostic checking of vector ARMA-GARCH models with Gaussian and Student-t innovations

This paper focuses on the diagnostic checking of vector ARMA (VARMA) models with multivariate GARCH errors. For a fitted VARMA-GARCH model with Gaussian or Student-t innovations, we derive the asymptotic distributions of autocorrelation matrices of the cross-product vector of standardized residuals. This is different from the traditional approach that employs only the squared series of standardized residuals. We then study two portmanteau statistics, called Q1(M) and Q2(M), for model checking. A residual-based bootstrap method is provided and demonstrated as an effective way to approximate the diagnostic checking statistics. Simulations are used to compare the performance of the proposed statistics with other methods available in the literature. In addition, we also investigate the effect of GARCH shocks on checking a fitted VARMA model. Empirical sizes and powers of the proposed statistics are investigated and the results suggest a procedure of using jointly Q1(M) and Q2(M) in diagnostic checking. The bivariate time series of FTSE 100 and DAX index returns is used to illustrate the performance of the proposed portmanteau statistics. The results show that it is important to consider the cross-product series of standardized residuals and GARCH effects in model checking.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 1 ; Year: 2013 ; Issue: 1 ; Pages: 1-31 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
vector autoregressive moving-average process
multivariate GARCH model
asymptotic distribution
portmanteau statistic
model checking
heavy tail
multivariate time series
bootstrap

Ereignis
Geistige Schöpfung
(wer)
Wang, Yongning
Tsay, Ruey S.
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2013

DOI
doi:10.3390/econometrics1010001
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Wang, Yongning
  • Tsay, Ruey S.
  • MDPI

Entstanden

  • 2013

Ähnliche Objekte (12)