Artikel
On diagnostic checking of vector ARMA-GARCH models with Gaussian and Student-t innovations
This paper focuses on the diagnostic checking of vector ARMA (VARMA) models with multivariate GARCH errors. For a fitted VARMA-GARCH model with Gaussian or Student-t innovations, we derive the asymptotic distributions of autocorrelation matrices of the cross-product vector of standardized residuals. This is different from the traditional approach that employs only the squared series of standardized residuals. We then study two portmanteau statistics, called Q1(M) and Q2(M), for model checking. A residual-based bootstrap method is provided and demonstrated as an effective way to approximate the diagnostic checking statistics. Simulations are used to compare the performance of the proposed statistics with other methods available in the literature. In addition, we also investigate the effect of GARCH shocks on checking a fitted VARMA model. Empirical sizes and powers of the proposed statistics are investigated and the results suggest a procedure of using jointly Q1(M) and Q2(M) in diagnostic checking. The bivariate time series of FTSE 100 and DAX index returns is used to illustrate the performance of the proposed portmanteau statistics. The results show that it is important to consider the cross-product series of standardized residuals and GARCH effects in model checking.
- Sprache
- 
                Englisch
 
- Erschienen in
- 
                Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 1 ; Year: 2013 ; Issue: 1 ; Pages: 1-31 ; Basel: MDPI
 
- Klassifikation
- 
                Wirtschaft
 
- Thema
- 
                vector autoregressive moving-average process
 multivariate GARCH model
 asymptotic distribution
 portmanteau statistic
 model checking
 heavy tail
 multivariate time series
 bootstrap
 
- Ereignis
- 
                Geistige Schöpfung
 
- (wer)
- 
                Wang, Yongning
 Tsay, Ruey S.
 
- Ereignis
- 
                Veröffentlichung
 
- (wer)
- 
                MDPI
 
- (wo)
- 
                Basel
 
- (wann)
- 
                2013
 
- DOI
- 
                
                    
                        doi:10.3390/econometrics1010001
- Handle
- Letzte Aktualisierung
- 
                
                    
                        10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Wang, Yongning
- Tsay, Ruey S.
- MDPI
Entstanden
- 2013
 
        
    