Arbeitspapier
Asymptotic theory for a vector ARMA-GARCH model
This paper investigates the asymptotic theory for a vector ARMA-GARCH model. The conditions for the strict stationarity, ergodicity, and the higherorder moments of the model are established. Consistency of the quasi-maximum likelihood estimator (QMLE) is proved under only the second-order moment condition. This consistency result is new, even for the univariate ARCH and GARCH models. Moreover, the asymptotic normality of the QMLE for the vector ARCH model is obtained under only the second-order moment of the unconditional errors, and the finite fourth-order moment of the conditional errors. Under additional moment conditions, the asymptotic normality of the QMLE is also obtained for the vector ARMA-ARCH and ARMA-GARCH models, as well as a consistent estimator of the asymptotic covariance.
- Sprache
-
Englisch
- Erschienen in
-
Series: ISER Discussion Paper ; No. 549
- Klassifikation
-
Wirtschaft
- Thema
-
ARCH-Modell
Theorie
Heteroskedastizität
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Ling, Shiqing
MacAleer, Michael
- Ereignis
-
Veröffentlichung
- (wer)
-
Osaka University, Institute of Social and Economic Research (ISER)
- (wo)
-
Osaka
- (wann)
-
2001
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Ling, Shiqing
- MacAleer, Michael
- Osaka University, Institute of Social and Economic Research (ISER)
Entstanden
- 2001