Arbeitspapier

ARMA-GARCH Models: Bayes Estimation Versus MLE, and Bayes Non-stationarity Test

We compare small-sample properties of Bayes estimation and maximum likelihood estimation (MLE) of ARMA-GARCH models. Our Monte Carlo experiments indicate that in small sample, the Bayes estimator beats the MLE. We also develop a Bayes method of testing strict stationarity and ergodicity of the conditional variance in the GARCH(1,1) process, near epoch depencenve (NED), and finiteness of unconditional moments of the GARCH(1,1) process by using a Markov chain Monte Carlo (MCMC) mehtod. We apply this method to test these properties in the ARMA-GARCH models of weekly foreign exchange rates.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 1996-19

Klassifikation
Wirtschaft
Bayesian Analysis: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Thema
GARCH
Markov Chain Monte Carlo (MCMC)
Near Epoch Dependence (NED)

Ereignis
Geistige Schöpfung
(wer)
Nakatsuma, Teruo
Tsurumi, Hiroki
Ereignis
Veröffentlichung
(wer)
Rutgers University, Department of Economics
(wo)
New Brunswick, NJ
(wann)
1996

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Nakatsuma, Teruo
  • Tsurumi, Hiroki
  • Rutgers University, Department of Economics

Entstanden

  • 1996

Ähnliche Objekte (12)