Arbeitspapier
ARMA-GARCH Models: Bayes Estimation Versus MLE, and Bayes Non-stationarity Test
We compare small-sample properties of Bayes estimation and maximum likelihood estimation (MLE) of ARMA-GARCH models. Our Monte Carlo experiments indicate that in small sample, the Bayes estimator beats the MLE. We also develop a Bayes method of testing strict stationarity and ergodicity of the conditional variance in the GARCH(1,1) process, near epoch depencenve (NED), and finiteness of unconditional moments of the GARCH(1,1) process by using a Markov chain Monte Carlo (MCMC) mehtod. We apply this method to test these properties in the ARMA-GARCH models of weekly foreign exchange rates.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 1996-19
- Klassifikation
-
Wirtschaft
Bayesian Analysis: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- Thema
-
GARCH
Markov Chain Monte Carlo (MCMC)
Near Epoch Dependence (NED)
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Nakatsuma, Teruo
Tsurumi, Hiroki
- Ereignis
-
Veröffentlichung
- (wer)
-
Rutgers University, Department of Economics
- (wo)
-
New Brunswick, NJ
- (wann)
-
1996
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Nakatsuma, Teruo
- Tsurumi, Hiroki
- Rutgers University, Department of Economics
Entstanden
- 1996