Arbeitspapier

ARMA-GARCH Models: Bayes Estimation Versus MLE, and Bayes Non-stationarity Test

We compare small-sample properties of Bayes estimation and maximum likelihood estimation (MLE) of ARMA-GARCH models. Our Monte Carlo experiments indicate that in small sample, the Bayes estimator beats the MLE. We also develop a Bayes method of testing strict stationarity and ergodicity of the conditional variance in the GARCH(1,1) process, near epoch depencenve (NED), and finiteness of unconditional moments of the GARCH(1,1) process by using a Markov chain Monte Carlo (MCMC) mehtod. We apply this method to test these properties in the ARMA-GARCH models of weekly foreign exchange rates.

Language
Englisch

Bibliographic citation
Series: Working Paper ; No. 1996-19

Classification
Wirtschaft
Bayesian Analysis: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Subject
GARCH
Markov Chain Monte Carlo (MCMC)
Near Epoch Dependence (NED)

Event
Geistige Schöpfung
(who)
Nakatsuma, Teruo
Tsurumi, Hiroki
Event
Veröffentlichung
(who)
Rutgers University, Department of Economics
(where)
New Brunswick, NJ
(when)
1996

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Nakatsuma, Teruo
  • Tsurumi, Hiroki
  • Rutgers University, Department of Economics

Time of origin

  • 1996

Other Objects (12)