Konferenzbeitrag

Data point selection for self-training

Problems for parsing morphologically rich languages are, amongst others, caused by the higher variability in structure due to less rigid word order constraints and by the higher number of different lexical forms. Both properties can result in sparse data problems for statistical parsing. We present a simple approach for addressing these issues. Our approach makes use of self-training on instances selected with regard to their similarity to the annotated data. Our similarity measure is based on the perplexity of part-of-speech trigrams of new instances measured against the annotated training data. Preliminary results show that our method outperforms a self-training setting where instances are simply selected by order of occurrence in the corpus and argue that selftraining is a cheap and effective method for improving parsing accuracy for morphologically rich languages.

Sprache
Englisch

Thema
Satzanalyse
Automatische Sprachanalyse
Sprache

Ereignis
Geistige Schöpfung
(wer)
Rehbein, Ines
Ereignis
Veröffentlichung
(wer)
Stroudsburg, PA : Association for Computational
(wann)
2016-11-21

URN
urn:nbn:de:bsz:mh39-56043
Letzte Aktualisierung
06.03.2025, 09:00 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Leibniz-Institut für Deutsche Sprache - Bibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Konferenzbeitrag

Beteiligte

  • Rehbein, Ines
  • Stroudsburg, PA : Association for Computational

Entstanden

  • 2016-11-21

Ähnliche Objekte (12)