Konferenzbeitrag
Data point selection for genre-aware parsing
In the NLP literature, adapting a parser to new text with properties different from the training data is commonly referred to as domain adaptation. In practice, however, the differences between texts from different sources often reflect a mixture of domain and genre properties, and it is by no means clear what impact each of those has on statistical parsing. In this paper, we investigate how differences between articles in a newspaper corpus relate to the concepts of genre and domain and how they influence parsing performance of a transition-based dependency parser. We do this by applying various similarity measures for data point selection and testing their adequacy for creating genre-aware parsing models.
- Sprache
-
Englisch
- Thema
-
Parsing
Korpus <Linguistik>
Textsorte
Sprache
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Rehbein, Ines
Bildhauer, Felix
- Ereignis
-
Veröffentlichung
- (wer)
-
Stroudsburg PA, USA : The Association for Computational Linguistics
- (wann)
-
2018-09-27
- URN
-
urn:nbn:de:bsz:mh39-80007
- Letzte Aktualisierung
-
06.03.2025, 09:00 MEZ
Datenpartner
Leibniz-Institut für Deutsche Sprache - Bibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Konferenzbeitrag
Beteiligte
- Rehbein, Ines
- Bildhauer, Felix
- Stroudsburg PA, USA : The Association for Computational Linguistics
Entstanden
- 2018-09-27