Artikel

Modeling high frequency data with long memory and structural change: A-HYEGARCH model

In this paper, we propose an Adaptive Hyperbolic EGARCH (A-HYEGARCH) model to estimate the long memory of high frequency time series with potential structural breaks. Based on the original HYGARCH model, we use the logarithm transformation to ensure the positivity of conditional variance. The structural change is further allowed via a flexible time-dependent intercept in the conditional variance equation. To demonstrate its effectiveness, we perform a range of Monte Carlo studies considering various data generating processes with and without structural changes. Empirical testing of the A-HYEGARCH model is also conducted using high frequency returns of S&P 500, FTSE 100, ASX 200 and Nikkei 225. Our simulation and empirical evidence demonstrate that the proposed A-HYEGARCH model outperforms various competing specifications and can effectively control for structural breaks. Therefore, our model may provide more reliable estimates of long memory and could be a widely useful tool for modelling financial volatility in other contexts.

Sprache
Englisch

Erschienen in
Journal: Risks ; ISSN: 2227-9091 ; Volume: 6 ; Year: 2018 ; Issue: 2 ; Pages: 1-28 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
long memory
structural change
GARCH
A-HYEGARCH

Ereignis
Geistige Schöpfung
(wer)
Shi, Yanlin
Yang, Yang
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2018

DOI
doi:10.3390/risks6020026
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Shi, Yanlin
  • Yang, Yang
  • MDPI

Entstanden

  • 2018

Ähnliche Objekte (12)