Arbeitspapier

Efficient and robust inference of models with occasionally binding constraints

This paper proposes a piecewise-linear Kalman filter (PKF) to estimate DSGE models with occasionally binding constraints. This method expands the set of models suitable for nonlinear estimation. It straightforwardly handles missing data, non-singularity (more shocks than observed time series), and large-scale models. We provide several applications to highlight its efficiency and robustness compared to existing methods. Our toolkit integrates the PKF into Dynare, the most popular software in DSGE modeling.

Sprache
Englisch

Erschienen in
Series: JRC Working Papers in Economics and Finance ; No. 2021/3

Klassifikation
Wirtschaft
Bayesian Analysis: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
Thema
DSGE
occasionally binding constraints
nonlinear estimation
Piecewise Kalman Filter

Ereignis
Geistige Schöpfung
(wer)
Giovannini, Massimo
Pfeiffer, Philipp
Ratto, Marco
Ereignis
Veröffentlichung
(wer)
European Commission
(wo)
Ispra
(wann)
2021

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Giovannini, Massimo
  • Pfeiffer, Philipp
  • Ratto, Marco
  • European Commission

Entstanden

  • 2021

Ähnliche Objekte (12)