Artikel

Robust inference in deconvolution

Kotlarski's identity has been widely used in applied economic research based on repeated-measurement or panel models with latent variables. However, how to conduct inference for these models has been an open question for two decades. This paper addresses this open problem by constructing a novel confidence band for the density function of a latent variable in repeated measurement error model. The confidence band builds on our finding that we can rewrite Kotlarski's identity as a system of linear moment restrictions. Our approach is robust in that we do not require the completeness. The confidence band controls the asymptotic size uniformly over a class of data generating processes, and it is consistent against all fixed alternatives. Simulation studies support our theoretical results.

Sprache
Englisch

Erschienen in
Journal: Quantitative Economics ; ISSN: 1759-7331 ; Volume: 12 ; Year: 2021 ; Issue: 1 ; Pages: 109-142 ; New Haven, CT: The Econometric Society

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Econometrics of Games and Auctions
Thema
Deconvolution
measurement error
robust inference
uniform confidence band

Ereignis
Geistige Schöpfung
(wer)
Kato, Kengo
Sasaki, Yuya
Ura, Takuya
Ereignis
Veröffentlichung
(wer)
The Econometric Society
(wo)
New Haven, CT
(wann)
2021

DOI
doi:10.3982/QE1643
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Kato, Kengo
  • Sasaki, Yuya
  • Ura, Takuya
  • The Econometric Society

Entstanden

  • 2021

Ähnliche Objekte (12)