Predictive modeling of sensory responses in deep brain stimulation

Abstract: Introduction: Although stimulation-induced sensations are typically considered undesirable side effects in clinical DBS therapy, there are emerging scenarios, such as computer-brain interface applications, where these sensations may be intentionally created. The selection of stimulation parameters, whether to avoid or induce sensations, is a challenging task due to the vast parameter space involved. This study aims to streamline DBS parameter selection by employing a machine learning model to predict the occurrence and somatic location of paresthesias in response to thalamic DBS.

Methods: We used a dataset comprising 3,359 paresthetic sensations collected from 18 thalamic DBS leads from 10 individuals in two clinical centers. For each stimulation, we modeled the Volume of Tissue Activation (VTA). We then used the stimulation parameters and the VTA information to train a machine learning model to predict the occurrence of sensations and their corresponding somatic areas.

Results: Our results show fair to substantial agreement with ground truth in predicting the presence and somatic location of DBS-evoked paresthesias, with Kappa values ranging from 0.31 to 0.72. We observed comparable performance in predicting the presence of paresthesias for both seen and unseen cases (Kappa 0.72 vs. 0.60). However, Kappa agreement for predicting specific somatic locations was significantly lower for unseen cases (0.53 vs. 0.31).

Conclusion: The results suggest that machine learning can potentially be used to optimize DBS parameter selection, leading to faster and more efficient postoperative management. Outcome predictions may be used to guide clinical DBS programming or tuning of DBS based computer-brain interfaces

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Frontiers in neurology. - 15 (2024) , 1467307, ISSN: 1664-2295

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber
Halász, László
Sajonz, Bastian
Miklós, Gabriella
van Elswijk, Gijs
Hagh Gooie, Saman
Várkuti, Bálint
Tamás, Gertrúd
Coenen, Volker Arnd
Erōss, Loránd

DOI
10.3389/fneur.2024.1467307
URN
urn:nbn:de:bsz:25-freidok-2579736
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2024

Ähnliche Objekte (12)