Arbeitspapier

Quantile regression with aggregated data

Analyses using aggregated data may bias inference. In this work we show how to avoid or at least reduce this bias when estimating quantile regressions using aggregated information. This is possible by considering the unconditional quantile regression recently introduced by Firpo et al (2009) and using a specific strategy to aggregate the data.

Language
Englisch

Bibliographic citation
Series: ISER Working Paper Series ; No. 2011-12

Classification
Wirtschaft
Methodological Issues: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Subject
quantile regression
ecological inference
aggregation bias

Event
Geistige Schöpfung
(who)
Nicoletti, Cheti
Best, Nicky G.
Event
Veröffentlichung
(who)
University of Essex, Institute for Social and Economic Research (ISER)
(where)
Colchester
(when)
2011

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Nicoletti, Cheti
  • Best, Nicky G.
  • University of Essex, Institute for Social and Economic Research (ISER)

Time of origin

  • 2011

Other Objects (12)