Stereo Vision SLAM with SuperPoint and SuperGlue

Abstract. This paper presents a method for stereo visual odometry and mapping that integrates VINS-Fusion-based visual odometry estimation with deep learning techniques for camera pose tracking and stereo image matching. Traditional approaches in the VINS-Fusion relied on classical methods for feature extraction and matching, which often resulted in inaccuracies in triangulation-based 3D position estimation. These inaccuracies could be mitigated by incorporating IMU-based position estimation, which yielded more accurate odometry estimates compared to using stereo camera only in three-dimensional space. Consequently, the original VINS-stereo algorithm necessitated a tightly-coupled integration of IMU sensor measurements with estimated visual odometry.To address these challenges, our work proposes replacing the traditional feature extraction method used in VINS-Fusion, the Shi-Tomasi (Good Features to Track) technique, with feature extraction via the SuperPoint deep network. This approach has demonstrated promising experimental results. Additionally, we have applied deep learning models to the matching of feature points that project the same three-dimensional point to pixel coordinates in different images. Instead of using the KLT optical flow algorithm previously employed by VINS-Fusion, our proposed method utilizes SuperGlue, a deep graph neural network for graph matching, to improve image tracking and stereo image matching performance. The performance of the proposed algorithm is evaluated using the publicly available EuRoC dataset, providing a comparison with existing algorithms.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Stereo Vision SLAM with SuperPoint and SuperGlue ; volume:XLVIII-4/W11-2024 ; year:2024 ; pages:183-188 ; extent:6
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLVIII-4/W11-2024 (2024), 183-188 (gesamt 6)

Klassifikation
Elektrotechnik, Elektronik

Urheber
Yoon, Si-Won
Park, Soon-Yong

DOI
10.5194/isprs-archives-XLVIII-4-W11-2024-183-2024
URN
urn:nbn:de:101:1-2408061103400.762119595863
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 11:00 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Yoon, Si-Won
  • Park, Soon-Yong

Ähnliche Objekte (12)