Overhauser DNP probes for compact magnetic resonance
Abstract: This thesis presents novel, miniaturized microwave (MW) resonators and probe heads for magnetic resonance (MR) spectroscopy and relaxometry. In combina- tion with dynamic nuclear polarization (DNP), high MR signal enhancements are achieved, enabling the analysis of very low amounts of liquid sample.
Nuclear magnetic resonance (NMR) is a powerful, non-invasive, non-destructive ana- lytical technique, revealing information about the structural and dynamic properties of chemical compounds on an atomic level. However, the technique is inherently insensitive. This limitation becomes even more pronounced for MR experiments performed on volume-limited samples employing compact NMR systems with con- ventional MR detector geometries. Unlike high-field, high-resolution NMR systems, which are based on superconducting magnets, compact NMR benchtop systems take advantage of permanent magnets, allowing to substantially reduce costs in terms of system acquisition and maintenance. The advantages related to such compact sys- tems, come at the prize of even lower signal sensitivity, limited spectral resolution and a challenging integration of system components into a compact form factor. The present work addresses these issues of conventional systems by exploiting mi- crofabrication techniques in combination with methods for MR signal enhance- ment, specifically via Overhauser effect DNP. The millimetre-sized MW resonators are integrated into a microfluidic chip, interacting with sample volumes as low as 130 nL. The double-resonant probes achieve MR signal enhancements of up to 60- fold, which translates into a dramatic reduction in acquisition time by a factor of 1/3600
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Universität Freiburg, Dissertation, 2019
- Schlagwort
-
Magnetic resonance
NMR-Spektroskopie
Overhauser-Effekt
Elektronenspinresonanzspektroskopie
Mikrosystemtechnik
Planare Mikrowellenleitung
Mikrofluidik
Dauermagnet
Dynamische Kernpolarisation
Mikrowellenresonator
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2020
- Urheber
- Beteiligte Personen und Organisationen
- DOI
-
10.6094/UNIFR/167500
- URN
-
urn:nbn:de:bsz:25-freidok-1675006
- Rechteinformation
-
Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
25.03.2025, 13:55 MEZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
Entstanden
- 2020