A study of minimax shrinkage estimators dominating the James-Stein estimator under the balanced loss function

Abstract: One of the most common challenges in multivariate statistical analysis is estimating the mean parameters. A well-known approach of estimating the mean parameters is the maximum likelihood estimator (MLE). However, the MLE becomes inefficient in the case of having large-dimensional parameter space. A popular estimator that tackles this issue is the James-Stein estimator. Therefore, we aim to use the shrinkage method based on the balanced loss function to construct estimators for the mean parameters of the multivariate normal (MVN) distribution that dominates both the MLE and James-Stein estimators. Two classes of shrinkage estimators have been established that generalized the James-Stein estimator. We study their domination and minimaxity properties to the MLE and their performances to the James-Stein estimators. The efficiency of the proposed estimators is explored through simulation studies.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
A study of minimax shrinkage estimators dominating the James-Stein estimator under the balanced loss function ; volume:20 ; number:1 ; year:2022 ; pages:1-11 ; extent:11
Open mathematics ; 20, Heft 1 (2022), 1-11 (gesamt 11)

Urheber
Benkhaled, Abdelkader
Hamdaoui, Abdenour
Almutiry, Waleed
Alshahrani, Mohammed
Terbeche, Mekki

DOI
10.1515/math-2022-0008
URN
urn:nbn:de:101:1-2022072814042408842518
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:38 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Benkhaled, Abdelkader
  • Hamdaoui, Abdenour
  • Almutiry, Waleed
  • Alshahrani, Mohammed
  • Terbeche, Mekki

Ähnliche Objekte (12)