Arbeitspapier

Quantile regression with an endogenous misclassified binary regressor

Recent work on the conditional mean model offers the possibility of addressing misreporting of participation in social programs, which is common and has increased in all major surveys. However, researchers who employ quantile regression continue to encounter challenges in terms of estimation and statistical inference. In this work, we propose a simple two-step estimator for a quantile regression model with endogenous misreporting. The identification of the model uses a parametric first stage and information related to participation and misreporting. We show that the estimator is consistent and asymptotically normal. We also establish that a bootstrap procedure is asymptotically valid for approximating the distribution of the estimator. Simulation studies show the small sample behavior of the estimator in comparison with other methods, including a new three-step estimator. Finally, we illustrate the novel approach using U.S. survey data to estimate the intergenerational effect of mother's participation on welfare on daughter's adult income.

Sprache
Englisch

Erschienen in
Series: Documento de Trabajo ; No. 318

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
Measurement and Analysis of Poverty
Thema
Quantile regression
Misclassification
Endogenous Treatments
Survey data

Ereignis
Geistige Schöpfung
(wer)
Lamarche, Carlos
Ereignis
Veröffentlichung
(wer)
Universidad Nacional de La Plata, Centro de Estudios Distributivos, Laborales y Sociales (CEDLAS)
(wo)
La Plata
(wann)
2023

Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Lamarche, Carlos
  • Universidad Nacional de La Plata, Centro de Estudios Distributivos, Laborales y Sociales (CEDLAS)

Entstanden

  • 2023

Ähnliche Objekte (12)