Dirichlet composition distribution for compositional data with zero components: An application to fluorescence in situ hybridization (FISH) detection of chromosome
Abstract: Zeros in compositional data are very common and can be classified into rounded and essential zeros. The rounded zero refers to a small proportion or below detection limit value, while the essential zero refers to the complete absence of the component in the composition. In this article, we propose a new framework for analyzing compositional data with zero entries by introducing a stochastic representation. In particular, a new distribution, namely the Dirichlet composition distribution, is developed to accommodate the possible essential‐zero feature in compositional data. We derive its distributional properties (e.g., its moments). The calculation of maximum likelihood estimates via the Expectation‐Maximization (EM) algorithm will be proposed. The regression model based on the new Dirichlet composition distribution will be considered. Simulation studies are conducted to evaluate the performance of the proposed methodologies. Finally, our method is employed to analyze a dataset of fluorescence in situ hybridization (FISH) for chromosome detection.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Dirichlet composition distribution for compositional data with zero components: An application to fluorescence in situ hybridization (FISH) detection of chromosome ; day:16 ; month:12 ; year:2021 ; extent:19
Biometrical journal ; (16.12.2021) (gesamt 19)
- Urheber
-
Tang, Man‐Lai
Wu, Qin
Yang, Sheng
Tian, Guo‐Liang
- DOI
-
10.1002/bimj.202000334
- URN
-
urn:nbn:de:101:1-2021121714134595032598
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:23 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Tang, Man‐Lai
- Wu, Qin
- Yang, Sheng
- Tian, Guo‐Liang