Artikel

Parametric inference for index functionals

In this paper, we study the finite sample accuracy of confidence intervals for index functional built via parametric bootstrap, in the case of inequality indices. To estimate the parameters of the assumed parametric data generating distribution, we propose a Generalized Method of Moment estimator that targets the quantity of interest, namely the considered inequality index. Its primary advantage is that the scale parameter does not need to be estimated to perform parametric bootstrap, since inequality measures are scale invariant. The very good finite sample coverages that are found in a simulation study suggest that this feature provides an advantage over the parametric bootstrap using the maximum likelihood estimator. We also find that overall, a parametric bootstrap provides more accurate inference than its non or semi-parametric counterparts, especially for heavy tailed income distributions.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 6 ; Year: 2018 ; Issue: 2 ; Pages: 1-11 ; Basel: MDPI

Klassifikation
Wirtschaft
Econometric and Statistical Methods and Methodology: General
Estimation: General
Statistical Simulation Methods: General
Index Numbers and Aggregation; Leading indicators
Specific Distributions; Specific Statistics
Personal Income, Wealth, and Their Distributions
Thema
parametric bootstrap
generalized method of moments
income distribution
inequality measurement
heavy tail

Ereignis
Geistige Schöpfung
(wer)
Guerrier, Stéphane
Orso, Samuel
Victoria-Feser, Maria-Pia
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2018

DOI
doi:10.3390/econometrics6020022
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Guerrier, Stéphane
  • Orso, Samuel
  • Victoria-Feser, Maria-Pia
  • MDPI

Entstanden

  • 2018

Ähnliche Objekte (12)