Artikel

Non-parametric statistic for testing cumulative abnormal stock returns

Due to the non-normality of stock returns, nonparametric rank tests are gaining accceptance relative to parametric tests in financial economics event studies. In rank tests, financial assets' multiple day cumulative abnormal returns (CARs) are replaced by cumulated ranks. This paper proposes modifications to the existing approaches to improve robustness to cross-sectional correlation of returns arising from calendar time overlapping event windows. Simulations show that the proposed rank test is well specified in testing CARs and is robust towards both complete and partial overlapping event windows.

Sprache
Englisch

Erschienen in
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 15 ; Year: 2022 ; Issue: 4 ; Pages: 1-13 ; Basel: MDPI

Klassifikation
Wirtschaft
Information and Market Efficiency; Event Studies; Insider Trading
Econometric and Statistical Methods and Methodology: General
Statistical Simulation Methods: General
Thema
finance
economics
event study
clustered event days
cross-sectional correlation
cumulated ranks
rank test
standardized abnormal returns

Ereignis
Geistige Schöpfung
(wer)
Pynnönen, Seppo
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2022

DOI
doi:10.3390/jrfm15040149
Handle
Letzte Aktualisierung
05.01.2028, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Pynnönen, Seppo
  • MDPI

Entstanden

  • 2022

Ähnliche Objekte (12)