How accurate is oral implant installation using surgical guides printed from a degradable and steam-sterilized biopolymer?

Abstract: 3D printed surgical guides are used for prosthetically-driven oral implant placement. When manufacturing these guides, information regarding suitable printing techniques and materials as well as the necessity for additional, non-printed stock parts such as metal sleeves is scarce. The aim of the investigation was to determine the accuracy of a surgical workflow for oral implant placement using guides manufactured by means of fused deposition modeling (FDM) from a biodegradable and sterilizable biopolymer filament. Furthermore, the potential benefit of metal sleeve inserts should be assessed. A surgical guide was designed for the installation of two implants in the region of the second premolar (SP) and second molar (SM) in a mandibular typodont model. For two additive manufacturing techniques (stereolithography [SLA]: reference group, FDM: observational group) n = 10 surgical guides, with (S) and without (NS) metal sleeves, were used. This resulted in 4 groups of 10 samples each (SLA-S/NS, FDM-S/NS). Target and real implant positions were superimposed and compared using a dedicated software. Sagittal, transversal, and vertical discrepancies at the level of the implant shoulder, apex and regarding the main axis were determined. MANOVA with posthoc Tukey tests were performed for statistical analyses. Placed implants showed sagittal and transversal discrepancies of <1 mm, vertical discrepancies of <0.6 mm, and axial deviations of ≤3°. In the vertical dimension, no differences between the four groups were measured (p ≤ 0.054). In the sagittal dimension, SLA groups showed decreased deviations in the implant shoulder region compared to FDM (p ≤ 0.033), whereas no differences in the transversal dimension between the groups were measured (p ≤ 0.054). The use of metal sleeves did not affect axial, vertical, and sagittal accuracy, but resulted in increased transversal deviations (p = 0.001). Regarding accuracy, biopolymer-based surgical guides manufactured by means of FDM present similar accuracy than SLA. Cytotoxicity tests are necessary to confirm their biocompatibility in the oral environment

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Journal of clinical medicine. - 9, 8 (2020) , 2322, ISSN: 2077-0383

Keyword
Rapid Prototyping
Biologischer Abbau
CAD
Zahnimplantat
Medizinisches Gerät
Lignin

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2020
Creator
Pieralli, Stefano
Spies, Benedikt Christopher
Hromadnik, Valentin
Nicic, Robert
Beuer, Florian
Wesemann, Christian

DOI
10.3390/jcm9082322
URN
urn:nbn:de:bsz:25-freidok-1667058
Rights
Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:58 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2020

Other Objects (12)