Arbeitspapier

Optional decomposition and lagrange multipliers

Let Q be the set of equivalent martingale measures for a given process S, and let X be a process which is a local supermartingale with respect to any measure in Q. The optional decomposition theorem for X states that there exists a predictable integrand ф such that the difference X−ф•S is a decreasing process. In this paper we give a new proof which uses techniques from stochastic calculus rather than functional analysis, and which removes any boundedness assumption.

Language
Englisch

Bibliographic citation
Series: SFB 373 Discussion Paper ; No. 1997,54

Classification
Wirtschaft
General Financial Markets: General (includes Measurement and Data)
Asset Pricing; Trading Volume; Bond Interest Rates
Subject
equivalent martingale measure
optional decomposition
semimartingale
Hellinger process
Lagrange multiplier

Event
Geistige Schöpfung
(who)
Föllmer, Hans
Kabanov, Jurij M.
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(where)
Berlin
(when)
1997

Handle
URN
urn:nbn:de:kobv:11-10064346
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Föllmer, Hans
  • Kabanov, Jurij M.
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Time of origin

  • 1997

Other Objects (12)