Arbeitspapier
Optional decomposition and lagrange multipliers
Let Q be the set of equivalent martingale measures for a given process S, and let X be a process which is a local supermartingale with respect to any measure in Q. The optional decomposition theorem for X states that there exists a predictable integrand ф such that the difference X−ф•S is a decreasing process. In this paper we give a new proof which uses techniques from stochastic calculus rather than functional analysis, and which removes any boundedness assumption.
- Language
-
Englisch
- Bibliographic citation
-
Series: SFB 373 Discussion Paper ; No. 1997,54
- Classification
-
Wirtschaft
General Financial Markets: General (includes Measurement and Data)
Asset Pricing; Trading Volume; Bond Interest Rates
- Subject
-
equivalent martingale measure
optional decomposition
semimartingale
Hellinger process
Lagrange multiplier
- Event
-
Geistige Schöpfung
- (who)
-
Föllmer, Hans
Kabanov, Jurij M.
- Event
-
Veröffentlichung
- (who)
-
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
- (where)
-
Berlin
- (when)
-
1997
- Handle
- URN
-
urn:nbn:de:kobv:11-10064346
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Föllmer, Hans
- Kabanov, Jurij M.
- Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
Time of origin
- 1997