Learning to play 3x3 games: neural networks as bounded-rational players

Abstract: "We present a neural network methodology for learning game-playing rules in general. Existing research suggests learning to find a Nash equilibrium in a new game is too difficult a task for a neural network, but says little about what it will do instead. We observe that a neural network trained to find Nash equilibria in a known subset of games will use self-taught rules developed endogenously when facing new games. These rules are close to payoff dominance and its best response. Our findings are consistent with existing experimental results, both in terms of subject's methodology and success rates." [author's abstract]

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Postprint
begutachtet (peer reviewed)
In: Journal of Economic Behavior & Organization ; 69 (2008) 1 ; 27-38

Ereignis
Veröffentlichung
(wo)
Mannheim
(wann)
2008
Urheber
Sgroi, Daniel
Zizzo, Daniel John

DOI
10.1016/j.jebo.2008.09.008
URN
urn:nbn:de:0168-ssoar-281143
Rechteinformation
Open Access unbekannt; Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:32 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2008

Ähnliche Objekte (12)