Journal article | Zeitschriftenartikel

Learning to play 3x3 games: neural networks as bounded-rational players

"We present a neural network methodology for learning game-playing rules in general. Existing research suggests learning to find a Nash equilibrium in a new game is too difficult a task for a neural network, but says little about what it will do instead. We observe that a neural network trained to find Nash equilibria in a known subset of games will use self-taught rules developed endogenously when facing new games. These rules are close to payoff dominance and its best response. Our findings are consistent with existing experimental results, both in terms of subject's methodology and success rates." [author's abstract]

Learning to play 3x3 games: neural networks as bounded-rational players

Urheber*in: Sgroi, Daniel; Zizzo, Daniel John

Free access - no reuse

Extent
Seite(n): 27-38
Language
Englisch
Notes
Status: Postprint; begutachtet (peer reviewed)

Bibliographic citation
Journal of Economic Behavior & Organization, 69(1)

Subject
Wirtschaft
Sozialwissenschaften, Soziologie
Wirtschaftswissenschaften
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Event
Geistige Schöpfung
(who)
Sgroi, Daniel
Zizzo, Daniel John
Event
Veröffentlichung
(where)
Niederlande
(when)
2008

DOI
URN
urn:nbn:de:0168-ssoar-281143
Rights
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
Last update
21.06.2024, 4:26 PM CEST

Data provider

This object is provided by:
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. If you have any questions about the object, please contact the data provider.

Object type

  • Zeitschriftenartikel

Associated

  • Sgroi, Daniel
  • Zizzo, Daniel John

Time of origin

  • 2008

Other Objects (12)