Artikel

Computational principal-agent problems

Collecting and processing large amounts of data is becoming increasingly crucialin our society. We model this task as evaluating a function f over a large vector x =(x1,...,xn), which is unknown, but drawn from a publicly known distribution X. In our model, learning each component of the input x is costly, but computing the output f(x) has zero cost once x is known. We consider the problem of a principal who wishes to delegate the evaluation of f to an agent whose cost of learning any number of components of x is always lower than the corresponding cost of the principal. We prove that, for every continuous function f and every ε>0, the principal can - by learning a single component xi of x - incentivize the agent to report the correct value f(x)with accuracy ε. complexity.

Sprache
Englisch

Erschienen in
Journal: Theoretical Economics ; ISSN: 1555-7561 ; Volume: 13 ; Year: 2018 ; Issue: 2 ; Pages: 553-578 ; New Haven, CT: The Econometric Society

Klassifikation
Wirtschaft
Asymmetric and Private Information; Mechanism Design
Economics of Contract: Theory
Thema
Principal agent problems
computational complexity

Ereignis
Geistige Schöpfung
(wer)
Azar, Pablo D.
Micali, Silvio
Ereignis
Veröffentlichung
(wer)
The Econometric Society
(wo)
New Haven, CT
(wann)
2018

DOI
doi:10.3982/TE1815
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Azar, Pablo D.
  • Micali, Silvio
  • The Econometric Society

Entstanden

  • 2018

Ähnliche Objekte (12)