Artikel
Computational principal-agent problems
Collecting and processing large amounts of data is becoming increasingly crucialin our society. We model this task as evaluating a function f over a large vector x =(x1,...,xn), which is unknown, but drawn from a publicly known distribution X. In our model, learning each component of the input x is costly, but computing the output f(x) has zero cost once x is known. We consider the problem of a principal who wishes to delegate the evaluation of f to an agent whose cost of learning any number of components of x is always lower than the corresponding cost of the principal. We prove that, for every continuous function f and every ε>0, the principal can - by learning a single component xi of x - incentivize the agent to report the correct value f(x)with accuracy ε. complexity.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Theoretical Economics ; ISSN: 1555-7561 ; Volume: 13 ; Year: 2018 ; Issue: 2 ; Pages: 553-578 ; New Haven, CT: The Econometric Society
- Klassifikation
-
Wirtschaft
Asymmetric and Private Information; Mechanism Design
Economics of Contract: Theory
- Thema
-
Principal agent problems
computational complexity
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Azar, Pablo D.
Micali, Silvio
- Ereignis
-
Veröffentlichung
- (wer)
-
The Econometric Society
- (wo)
-
New Haven, CT
- (wann)
-
2018
- DOI
-
doi:10.3982/TE1815
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Azar, Pablo D.
- Micali, Silvio
- The Econometric Society
Entstanden
- 2018