Artikel

A theory of regular Markov perfect equilibria in dynamic stochastic games: genericity, stability, and purification

This paper studies generic properties of Markov perfect equilibria in dynamic stochastic games. We show that almost all dynamic stochastic games have a finite number of locally isolated Markov perfect equilibria. These equilibria are essential and strongly stable. Moreover, they all admit purification. To establish these results, we introduce a notion of regularity for dynamic stochastic games and exploit a simple connection between normal form and dynamic stochastic games.

Sprache
Englisch

Erschienen in
Journal: Theoretical Economics ; ISSN: 1555-7561 ; Volume: 5 ; Year: 2010 ; Issue: 3 ; Pages: 369-402 ; New Haven, CT: The Econometric Society

Klassifikation
Wirtschaft
Stochastic and Dynamic Games; Evolutionary Games; Repeated Games
Optimization Techniques; Programming Models; Dynamic Analysis
Existence and Stability Conditions of Equilibrium
Thema
Dynamic stochastic games
Markov perfect equilibrium
regularity
genericity
finiteness
strong stability
essentiality
purifiability
estimation
computation
repeated games

Ereignis
Geistige Schöpfung
(wer)
Doraszelski, Ulrich
Escobar, Juan
Ereignis
Veröffentlichung
(wer)
The Econometric Society
(wo)
New Haven, CT
(wann)
2010

DOI
doi:10.3982/TE632
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Doraszelski, Ulrich
  • Escobar, Juan
  • The Econometric Society

Entstanden

  • 2010

Ähnliche Objekte (12)