Artikel

Deep partial hedging

Using techniques from deep learning, we show that neural networks can be trained successfully to replicate the modified payoff functions that were first derived in the context of partial hedging by Föllmer and Leukert. Not only does this approach better accommodate the realistic setting of hedging in discrete time, it also allows for the inclusion of transaction costs as well as general market dynamics. It needs to be noted that, without further modifications, the approach works only if the risk aversion is beyond a certain level.

Sprache
Englisch

Erschienen in
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 15 ; Year: 2022 ; Issue: 5 ; Pages: 1-5

Klassifikation
Management
Thema
machine learning
market frictions
partial hedging
risk management
transaction costs

Ereignis
Geistige Schöpfung
(wer)
Hou, Songyan
Krabichler, Thomas
Wunsch, Marcus
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2022

DOI
doi:10.3390/jrfm15050223
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Hou, Songyan
  • Krabichler, Thomas
  • Wunsch, Marcus
  • MDPI

Entstanden

  • 2022

Ähnliche Objekte (12)