Artikel

Quadratic hedging of basis risk

This paper examines a simple basis risk model based on correlated geometric Brownian motions. We apply quadratic criteria to minimize basis risk and hedge in an optimal manner. Initially, we derive the Föllmer-Schweizer decomposition for a European claim. This allows pricing and hedging under the minimal martingale measure, corresponding to the local risk-minimizing strategy. Furthermore, since the mean-variance tradeoff process is deterministic in our setup, the minimal martingale- and variance-optimal martingale measures coincide. Consequently, the mean-variance optimal strategy is easily constructed. Simple pricing and hedging formulae for put and call options are derived in terms of the Black-Scholes formula. Due to market incompleteness, these formulae depend on the drift parameters of the processes. By making a further equilibrium assumption, we derive an approximate hedging formula, which does not require knowledge of these parameters. The hedging strategies are tested using Monte Carlo experiments, and are compared with results achieved using a utility maximization approach.

Sprache
Englisch

Erschienen in
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 8 ; Year: 2015 ; Issue: 1 ; Pages: 83-102 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
option hedging
incomplete markets
basis risk
local risk minimization
mean-variance hedging

Ereignis
Geistige Schöpfung
(wer)
Hulley, Hardy
McWalter, Thomas A.
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2015

DOI
doi:10.3390/jrfm8010083
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Hulley, Hardy
  • McWalter, Thomas A.
  • MDPI

Entstanden

  • 2015

Ähnliche Objekte (12)