Arbeitspapier

Pairwise preferences in the stable marriage problem

We study the classical, two-sided stable marriage problem under pairwise preferences. In the most generalsetting, agents are allowed to express their preferences as comparisons of any two of their edges and they alsohave the right to declare a draw or even withdraw from such a comparison. This freedom isthen graduallyrestricted as we specify six stages of orderedness in the preferences, ending with the classical case of strictlyordered lists.We study all cases occurring when combining the three known notions of stability - weak, strongand super-stability - under the assumption that each side of the bipartite market obtains one of the six degreesof orderedness. By designing three polynomial algorithms and two NP-completeness proofs we determinethe complexity of all cases not yet known, and thus give an exact boundary in terms of preference structurebetween tractable and intractable cases.

Sprache
Englisch

Erschienen in
Series: CERS-IE Working Papers ; No. CERS-IE WP - 2020/6

Klassifikation
Wirtschaft
Computational Techniques; Simulation Modeling
Bargaining Theory; Matching Theory
Thema
stable marriage
intransitivity
acyclic preferences
poset
weakly stable matching
strongly stable matching
super stable matching

Ereignis
Geistige Schöpfung
(wer)
Cseh, Ágnes
Juhos, Attila
Ereignis
Veröffentlichung
(wer)
Hungarian Academy of Sciences, Institute of Economics, Centre for Economic and Regional Studies
(wo)
Budapest
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Cseh, Ágnes
  • Juhos, Attila
  • Hungarian Academy of Sciences, Institute of Economics, Centre for Economic and Regional Studies

Entstanden

  • 2020

Ähnliche Objekte (12)