Comparing Multiple Imputation and Propensity-Score Weighting in Unit-Nonresponse Adjustments: A Simulation Study

Abstract: The usual approach to unit-nonresponse bias detection and adjustment in social surveys has been post-stratification weights, or more recently, propensity-score weighting (PSW) based on auxiliary information. There exists a third approach, which is far less popular: using multiple imputed values for each missing unit of the survey outcome(s). We suggest multiple imputation (MI) as an alternative to PSW since the latter is known to increase variance substantially without reducing bias when auxiliary variables are not associated with the survey outcome of interest. Given that most social surveys have multiple target variables, creating imputed data sets may address bias in survey outcomes with less variance inflation. We examine the performance of PSW and MI on mean estimates under various conditions using fully simulated data. To evaluate the performance of the methods, we report average bias, root mean squared error, and percent coverage of 95 percent confidence intervals. MI perfor

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Postprint
begutachtet (peer reviewed)
In: Public Opinion Quarterly ; 79 (2015) 3 ; 635-661

Klassifikation
Wirtschaft

Ereignis
Veröffentlichung
(wo)
Mannheim
(wann)
2015
Urheber
Alanya, Ahu
Wolf, Christof
Sotto, Cristina

DOI
10.1093/poq/nfv029
URN
urn:nbn:de:0168-ssoar-60870-8
Rechteinformation
Open Access unbekannt; Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Alanya, Ahu
  • Wolf, Christof
  • Sotto, Cristina

Entstanden

  • 2015

Ähnliche Objekte (12)