Journal article | Zeitschriftenartikel

Comparing Multiple Imputation and Propensity-Score Weighting in Unit-Nonresponse Adjustments: A Simulation Study

The usual approach to unit-nonresponse bias detection and adjustment in social surveys has been post-stratification weights, or more recently, propensity-score weighting (PSW) based on auxiliary information. There exists a third approach, which is far less popular: using multiple imputed values for each missing unit of the survey outcome(s). We suggest multiple imputation (MI) as an alternative to PSW since the latter is known to increase variance substantially without reducing bias when auxiliary variables are not associated with the survey outcome of interest. Given that most social surveys have multiple target variables, creating imputed data sets may address bias in survey outcomes with less variance inflation. We examine the performance of PSW and MI on mean estimates under various conditions using fully simulated data. To evaluate the performance of the methods, we report average bias, root mean squared error, and percent coverage of 95 percent confidence intervals. MI performs better under some of our scenarios, but PSW performs better under others. Even within certain scenarios, PSW performs better on coverage or root mean squared error while MI performs better on the other criteria. Therefore, robust methods that simultaneously model both the outcomes and the (non)response may be a promising alternative in the future.

Comparing Multiple Imputation and Propensity-Score Weighting in Unit-Nonresponse Adjustments: A Simulation Study

Urheber*in: Alanya, Ahu; Wolf, Christof; Sotto, Cristina

Rechte vorbehalten - Freier Zugang

0
/
0

ISSN
1537-5331
Umfang
Seite(n): 635-661
Sprache
Englisch
Anmerkungen
Status: Postprint; begutachtet (peer reviewed)

Erschienen in
Public Opinion Quarterly, 79(3)

Thema
Sozialwissenschaften, Soziologie
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Antwortverhalten
Methodenvergleich
Schätzung
Simulation
multivariate Analyse
Stichprobe
Gewichtung
Umfrageforschung

Ereignis
Geistige Schöpfung
(wer)
Alanya, Ahu
Wolf, Christof
Sotto, Cristina
Ereignis
Veröffentlichung
(wo)
Vereinigtes Königreich
(wann)
2015

DOI
URN
urn:nbn:de:0168-ssoar-60870-8
Rechteinformation
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
Letzte Aktualisierung
21.06.2024, 16:27 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Zeitschriftenartikel

Beteiligte

  • Alanya, Ahu
  • Wolf, Christof
  • Sotto, Cristina

Entstanden

  • 2015

Ähnliche Objekte (12)