Bericht

Ungeordnete Zahlpartitionen mit k Parts, ihre 2^(k - 1) Typen und ihre typspezifischen erzeugenden Funktionen

Die 2^(k – 1) Typen der ungeordneten Zahlpartitionen mit k Parts (k-Partitionen) werden hier mit Hilfe der geordneten Partitionen von k definiert. Für jeden Typ gibt es eine erzeugende Funktion der geschlossenen Form mit eindeutiger Nummerierung. Die bekannte erzeugende Funktion der k-Partitionen ist die Summe dieser 2^(k – 1) typspezifischen erzeugenden Funktionen. Die Expansion dieser typspezifischen erzeugenden Funktionen in (unendlich lange) Potenzreihen ist rekursiv möglich. Untersucht werden Zerlegungen von erzeugenden Funktionen der einfachen Typen in erzeugende Funktionen anderer Typen. Damit lassen sich Bijektionen zwischen den Partitionen verschiedener Typen aufspüren. Die typspezifischen Betrachtungen werden auf die geordneten Partitionen und auf ihre erzeugenden Funktionen ausgeweitet.:1. Kurze Vorbetrachtung 2. Die Typen der ungeordneten k-Partitionen 3. Konstruktion einer typspezifischen GF (generating function) 4. Nummerierung und Symbolik für typspezifische GF’s 5. Die Summe aller typspezifischen GF’s 6. Multiplizieren elementarer Potenzreihen, Erzeugungsformeln 7. Rekursives Expandieren typspezifischer GF’s 8. Zahlen, die in k-Partitionen aller 2^(k – 1) Typen zerlegbar sind 9. Die Konjugierten der typspezifischen k-Partitionen 10. GF-Zerlegungen 10.1 Zerlegung der GF des Typs r = 2 10.2 Zerlegung der GF des Typs r = 3 11. Die typspezifischen GF’s der geordneten Partitionen 12. Literaturverzeichnis 13. Nachwort

Verwandtes Objekt und Literatur
urn:nbn:de:bsz:14-qucosa-95635
qucosa:2582

Thema
Mathematik

Ereignis
Geistige Schöpfung
(wer)
Lösch, Manfred
Ereignis
Veröffentlichung
(wer)
Manfred Lösch

URN
urn:nbn:de:bsz:14-qucosa-143512
Letzte Aktualisierung
20.10.2023, 09:50 MESZ

Objekttyp


  • Bericht

Beteiligte


  • Lösch, Manfred
  • Manfred Lösch

Ähnliche Objekte (12)