Arbeitspapier
Quantiles for counts
This paper studies the estimation of conditional quantiles of counts. Given the discreteness of the data, some smoothness has to be artificially imposed on the problem. The methods currently available to estimate quantiles of count data either assume that the counts result from the discretization of a continuous process, or are based on a smoothed objective function. However, these methods have several drawbacks. We show that it is possible to smooth the data in a way that allows inference to be performed using standard quantile regression techniques. The performance and implementation of the estimator are illustrated by simulations and an application.
- Sprache
-
Englisch
- Erschienen in
-
Series: cemmap working paper ; No. CWP22/02
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
- Thema
-
Asymmetric maximum likelihood, Jittering, Maximum score estimator, Quantile regression, Smoothing
Schätzung
Zähldatenmodell
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Machado, José A. F.
Silva, J. M. C. Santos
- Ereignis
-
Veröffentlichung
- (wer)
-
Centre for Microdata Methods and Practice (cemmap)
- (wo)
-
London
- (wann)
-
2002
- DOI
-
doi:10.1920/wp.cem.2002.2202
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Machado, José A. F.
- Silva, J. M. C. Santos
- Centre for Microdata Methods and Practice (cemmap)
Entstanden
- 2002