Arbeitspapier

Quantiles for counts

This paper studies the estimation of conditional quantiles of counts. Given the discreteness of the data, some smoothness has to be artificially imposed on the problem. The methods currently available to estimate quantiles of count data either assume that the counts result from the discretization of a continuous process, or are based on a smoothed objective function. However, these methods have several drawbacks. We show that it is possible to smooth the data in a way that allows inference to be performed using standard quantile regression techniques. The performance and implementation of the estimator are illustrated by simulations and an application.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP22/02

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
Thema
Asymmetric maximum likelihood, Jittering, Maximum score estimator, Quantile regression, Smoothing
Schätzung
Zähldatenmodell

Ereignis
Geistige Schöpfung
(wer)
Machado, José A. F.
Silva, J. M. C. Santos
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2002

DOI
doi:10.1920/wp.cem.2002.2202
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Machado, José A. F.
  • Silva, J. M. C. Santos
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2002

Ähnliche Objekte (12)