Arbeitspapier

Global Bahadur representation for nonparametric censored regression quantiles and its applications

This paper is concerned with the nonparametric estimation of regression quantiles where the response variable is randomly censored. Using results on the strong uniform convergence of U-processes, we derive a global Bahadur representation for the weighted local polynomial estimators, which is sufficiently accurate for many further theoretical analyses including inference. We consider two applications in detail: estimation of the average derivative, and estimation of the component functions in additive quantile regression models.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP33/11

Classification
Wirtschaft
Subject
Bahadur representation
Censored data
Kernel smoothing
Quantile regression
Semiparametric models
Nichtparametrisches Verfahren
Regression
Schätztheorie

Event
Geistige Schöpfung
(who)
Kong, Efang
Linton, Oliver
Xia, Yingcun
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2011

DOI
doi:10.1920/wp.cem.2011.3311
Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Kong, Efang
  • Linton, Oliver
  • Xia, Yingcun
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2011

Other Objects (12)