Arbeitspapier
Inference on breakdown frontiers
A breakdown frontier is the boundary between the set of assumptions which lead to a specific conclusion and those which do not. In a potential outcomes model with a binary treatment, we consider two conclusions: First, that ATE is at least a specific value (e.g., nonnegative) and second that the proportion of units who benefit from treatment is at least a specific value (e.g., at least 50%). For these conclusions, we derive the breakdown frontier for two kinds of assumptions: one which indexes deviations from random assignment of treatment, and one which indexes deviations from rank invariance. These classes of assumptions nest both the point identifying assumptions of random assignment and rank invariance and the opposite end of no constraints on treatment selection or the dependence structure between potential outcomes. This frontier provides a quantitative measure of robustness of conclusions to deviations in the point identifying assumptions. We derive ÍN-consistent sample analog estimators for these frontiers. We then provide an asymptotically valid bootstrap procedure for constructing lower uniform confidence bands for the breakdown frontier. As a measure of robustness, this confidence band can be presented alongside traditional point estimates and confidence intervals obtained under point identifying assumptions. We illustrate this approach in an empirical application to the effect of child soldiering on wages. We find that conclusions are fairly robust to failure of rank invariance, when random assignment holds, but conclusions are much more sensitive to both assumptions for small deviations from random assignment.
- Language
-
Englisch
- Bibliographic citation
-
Series: cemmap working paper ; No. CWP20/17
- Classification
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Methodological Issues: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
Model Construction and Estimation
- Subject
-
Nonparametric Identification
Partial Identification
Sensitivity Analysis
Selection on Unobservables
Rank Invariance
Treatment Effects
- Event
-
Geistige Schöpfung
- (who)
-
Masteny, Matthew A.
Poirierz, Alexandre
- Event
-
Veröffentlichung
- (who)
-
Centre for Microdata Methods and Practice (cemmap)
- (where)
-
London
- (when)
-
2017
- DOI
-
doi:10.1920/wp.cem.2017.2017
- Handle
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Masteny, Matthew A.
- Poirierz, Alexandre
- Centre for Microdata Methods and Practice (cemmap)
Time of origin
- 2017