Machine learning for the Zwicky Transient Facility

Abstract: The Zwicky Transient Facility is a large optical survey in multiple filters producing hundreds of thousands of transient alerts per night. We describe here various machine learning (ML) implementations and plans to make the maximal use of the large data set by taking advantage of the temporal nature of the data, and further combining it with other data sets. We start with the initial steps of separating bogus candidates from real ones, separating stars and galaxies, and go on to the classification of real objects into various classes. Besides the usual methods (e.g., based on features extracted from light curves) we also describe early plans for alternate methods including the use of domain adaptation, and deep learning. In a similar fashion we describe efforts to detect fast moving asteroids. We also describe the use of the Zooniverse platform for helping with classifications through the creation of training samples, and active learning. Finally we mention the synergistic aspects of ZTF and LSST from the ML perspective

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Publications of the Astronomical Society of the Pacific. - 131, 997 (2019) , 038002, ISSN: 1538-3873

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2022
Urheber
Mahabal, Ashish
Sedaghat Alvar, Nima
Wright, Darryl

DOI
10.1088/1538-3873/aaf3fa
URN
urn:nbn:de:bsz:25-freidok-2256524
Rechteinformation
Kein Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:50 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2022

Ähnliche Objekte (12)