Epistemologies of predictive policing: mathematical social science, social physics and machine learning

Abstract: Predictive policing has become a new panacea for crime prevention. However, we still know too little about the performance of computational methods in the context of predictive policing. The paper provides a detailed analysis of existing approaches to algorithmic crime forecasting. First, it is explained how predictive policing makes use of predictive models to generate crime forecasts. Afterwards, three epistemologies of predictive policing are distinguished: mathematical social science, social physics and machine learning. Finally, it is shown that these epistemologies have significant implications for the constitution of predictive knowledge in terms of its genesis, scope, intelligibility and accessibility. It is the different ways future crimes are rendered knowledgeable in order to act upon them that reaffirm or reconfigure the status of criminological knowledge within the criminal justice system, direct the attention of law enforcement agencies to particular types of crimes and criminals and blank out others, satisfy the claim for the meaningfulness of predictions or break with it and allow professionals to understand the algorithmic systems they shall rely on or turn them into a black box. By distinguishing epistemologies and analysing their implications, this analysis provides insight into the techno-scientific foundations of predictive policing and enables us to critically engage with the socio-technical practices of algorithmic crime forecasting

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Big data & society. - 8, 1 (2021) , 1-13, ISSN: 2053-9517

Klassifikation
Soziale Probleme, Sozialdienste, Versicherungen

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2021
Urheber

DOI
10.1177/20539517211003118
URN
urn:nbn:de:bsz:25-freidok-1943438
Rechteinformation
Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:52 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2021

Ähnliche Objekte (12)