Arbeitspapier

Estimating nonlinear heterogeneous agents models with neural networks

Economists typically make simplifying assumptions to make the solution and estimation of their highly complex models feasible. These simplifications include approximating the true nonlinear dynamics of the model, disregarding aggregate uncertainty or assuming that all agents are identical. While relaxing these assumptions is well-known to give rise to complicated curse-of-dimensionality problems, it is often unclear how seriously these simplifications distort the dynamics and predictions of the model. We leverage the recent advancements in machine learning to develop a solution and estimation method based on neural networks that does not require these strong assumptions. We apply our method to a nonlinear Heterogeneous Agents New Keynesian (HANK) model with a zero lower bound (ZLB) constraint for the nominal interest rate to show that the method is much more efficient than existing global solution methods and that the estimation converges to the true parameter values. Further, this application sheds light on how effectively our method is capable to simultaneously deal with a large number of state variables and parameters, nonlinear dynamics, heterogeneity as well as aggregate uncertainty.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. WP 2022-26

Klassifikation
Wirtschaft
Bayesian Analysis: General
Neural Networks and Related Topics
Personal Income, Wealth, and Their Distributions
Business Fluctuations; Cycles
Monetary Policy
Thema
Machine learning
neural networks
Bayesian estimation
global solution
heterogeneous agents
nonlinearities
aggregate uncertainty
HANK model
zero lower bound

Ereignis
Geistige Schöpfung
(wer)
Kase, Hanno
Melosi, Leonardo
Rottner, Matthias
Ereignis
Veröffentlichung
(wer)
Federal Reserve Bank of Chicago
(wo)
Chicago, IL
(wann)
2022

DOI
doi:10.21033/wp-2022-26
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kase, Hanno
  • Melosi, Leonardo
  • Rottner, Matthias
  • Federal Reserve Bank of Chicago

Entstanden

  • 2022

Ähnliche Objekte (12)