Artikel

Bayesian nonparametric measurement of factor betas and clustering with application to hedge fund returns

We define a dynamic and self-adjusting mixture of Gaussian Graphical Models to cluster financial returns, and provide a new method for extraction of nonparametric estimates of dynamic alphas (excess return) and betas (to a choice set of explanatory factors) in a multivariate setting. This approach, as well as the outputs, has a dynamic, nonstationary and nonparametric form, which circumvents the problem of model risk and parametric assumptions that the Kalman filter and other widely used approaches rely on. The by-product of clusters, used for shrinkage and information borrowing, can be of use to determine relationships around specific events. This approach exhibits a smaller Root Mean Squared Error than traditionally used benchmarks in financial settings, which we illustrate through simulation. As an illustration, we use hedge fund index data, and find that our estimated alphas are, on average, 0.13% per month higher (1.6% per year) than alphas estimated through Ordinary Least Squares. The approach exhibits fast adaptation to abrupt changes in the parameters, as seen in our estimated alphas and betas, which exhibit high volatility, especially in periods which can be identified as times of stressful market events, a reflection of the dynamic positioning of hedge fund portfolio managers.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 4 ; Year: 2016 ; Issue: 1 ; Pages: 1-23 ; Basel: MDPI

Klassifikation
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Thema
nonparametric clustering
Bayesian
cluster
nonparametric alpha and beta
hedge fund performance

Ereignis
Geistige Schöpfung
(wer)
Garay, Urbi
ter Horst, Enrique
Molina, German
Rodriguez, Abel
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2016

DOI
doi:10.3390/econometrics4010013
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Garay, Urbi
  • ter Horst, Enrique
  • Molina, German
  • Rodriguez, Abel
  • MDPI

Entstanden

  • 2016

Ähnliche Objekte (12)