Arbeitspapier

Bayesian inference for hedge funds with stable distribution of returns

Recently, a body of academic literature has focused on the area of stable distributions and their application potential for improving our understanding of the risk of hedge funds. At the same time, research has sprung up that applies standard Bayesian methods to hedge fund evaluation. Little or no academic attention has been paid to the combination of these two topics. In this paper, we consider Bayesian inference for alpha-stable distributions with particular regard to hedge fund performance and risk assessment. After constructing Bayesian estimators for alpha-stable distributions in the context of an ARMA-GARCH time series model with stable innovations, we compare our risk evaluation and prediction results to the predictions of several competing conditional and unconditional models that are estimated in both the frequentist and Bayesian setting. We find that the conditional Bayesian model with stable innovations has superior risk prediction capabilities compared with other approaches and, in particular, produced better risk forecasts of the abnormally large losses that some hedge funds sustained in the months of September and October 2008.

Sprache
Englisch

Erschienen in
Series: KIT Working Paper Series in Economics ; No. 1

Klassifikation
Wirtschaft
Thema
Hedgefonds
Wertpapieranalyse
Kapitalertrag
Risiko
Statistische Verteilung
Bayes-Statistik
Schätztheorie
Theorie
Schätzung
Welt

Ereignis
Geistige Schöpfung
(wer)
Güner, Biliana
Rachev, Svetlozar T.
Edelman, Daniel
Fabozzi, Frank J.
Ereignis
Veröffentlichung
(wer)
Karlsruher Institut für Technologie (KIT), Institut für Volkswirtschaftslehre (ECON)
(wo)
Karlsruhe
(wann)
2010

DOI
doi:10.5445/IR/1000019743
Handle
URN
urn:nbn:de:swb:90-197430
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Güner, Biliana
  • Rachev, Svetlozar T.
  • Edelman, Daniel
  • Fabozzi, Frank J.
  • Karlsruher Institut für Technologie (KIT), Institut für Volkswirtschaftslehre (ECON)

Entstanden

  • 2010

Ähnliche Objekte (12)