Arbeitspapier

Dynamic Spatial Network Quantile Autoregression

This paper proposes a dynamic spatial autoregressive quantile model. Using predetermined network information, we study dynamic tail event driven risk using a system of conditional quantile equations. Extending Zhu, Wang, Wang and Härdle (2019), we allow the contemporaneous dependency of nodal responses by incorporating a spatial lag in our model. For example, this is to allow a firm’s tail behavior to be connected with a weighted aggregation of the simultaneous returns of the other firms. In addition, we control for the common factor effects. The instrumental variable quantile regressive method is used for our model estimation, and the associated asymptotic theory for estimation is also provided. Simulation results show that our model performs well at various quantile levels with different network structures, especially when the node size increases. Finally, we illustrate our method with an empirical study. We uncover significant network effects in the spatial lag among financial institutions.

Sprache
Englisch

Erschienen in
Series: IRTG 1792 Discussion Paper ; No. 2020-024

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
Financial Forecasting and Simulation
Thema
Network
Quantile autoregression
Instrumental variables
Dynamic models

Ereignis
Geistige Schöpfung
(wer)
Xu, Xiu
Wang, Weining
Shin, Yongcheol
Ereignis
Veröffentlichung
(wer)
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
(wo)
Berlin
(wann)
2020

Handle
Letzte Aktualisierung
20.09.2024, 08:21 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Xu, Xiu
  • Wang, Weining
  • Shin, Yongcheol
  • Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Entstanden

  • 2020

Ähnliche Objekte (12)